In vitro method for real-time, direct observation of cell-vascular graft interactions under simulated blood flow.

نویسندگان

  • Joseph S Uzarski
  • Aurore B Van de Walle
  • Peter S McFetridge
چکیده

In the development of engineered vascular grafts, assessing the material's interactive properties with peripheral blood cells and its capacity to endothelialize are important for predicting in vivo graft behavior. Current in vitro techniques used for characterizing cell adhesion at the surface of engineered scaffolds under flow only facilitate a terminal quantification of cell/surface interactions. Here, we present the design of an innovative flow chamber for real-time analysis of blood-biomaterial interactions under controllable hemodynamic conditions. Decellularized human umbilical veins (dHUV) were used as model vascular allografts to characterize platelet, leukocyte, and endothelial cell (EC) adhesion dynamics. Confluent EC monolayers adhered to the lumenal surface of the grafting material were flow conditioned to resist arterial shear stress levels (up to 24 dynes/cm(2)) over a 48 h period, and shown to maintain viability over the 1 week assessment period. The basement membrane was imaged while whole blood/neutrophil suspensions were perfused across the HUV surface to quantify cell accumulation. This novel method facilitates live visualization of dynamic events, including cell adhesion, migration, and morphological adaptation at the blood-graft interface on opaque materials, and it can be used for preliminary assessment of clinically relevant biomaterials before implantation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions

Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...

متن کامل

P27: KCNK2 and Adhesion Molecules in an in-Vitro Blood Brain Barrier Model

Two-pore domain potassium channels, like KCNK2, are known to play an important role in inflammatory diseases such as multiple sclerosis (MS). Upregulation of cellular adhesion molecules in mouse brain microvascular endothelial cells (MBMECs) of Kcnk2-/- mice resulted in elevated leukocyte trafficking into the central nervous system under inflammatory conditions. The current project aims to gain...

متن کامل

Imaging Leukocyte Adhesion to the Vascular Endothelium at High Intraluminal Pressure

Worldwide, hypertension is reported to be in approximately a quarter of the population and is the leading biomedical risk factor for mortality worldwide. In the vasculature hypertension is associated with endothelial dysfunction and increased inflammation leading to atherosclerosis and various disease states such as chronic kidney disease(2), stroke(3) and heart failure(4). An initial step in v...

متن کامل

Pathological and Doppler Ultrasonographic Study of Kidney Hemodynamic Response in Saffron (Crocus Sativua) Pretreated Rats

Objective-  To evaluate kidney hemodynamic response including blood flow velocity in segmental arteries shortly after administration of various dose of saffron extract (10, 40 and 90 mg/kg).   Design- Technical assessment, experimental study.   Animals- 20 healthy male Sprague-Dawley rats.   Procedures- In this study, using a real-time pulsed doppler analysis, kidney hemodynamic response inc...

متن کامل

Investigation of FLK-1 Gene Expression in Differentiated Mesenchymal Stem Cells, Exposed to Chemical, Mechanical and Chemical-mechanical Factors, in order to Study the Differentiation and its Stability

Background: Mesenchymal stem cells (MSCs) are multipotent cells, capable of differentiating into different cell lines.They can sense their surrounding biochemical and biophysical factors, which play major roles in their differentiation toward different phenotypes. Therefore, the exposure of these cells to endothelial growth factor (VEGF) as well as hemodynamic biomechanical forces, which act on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering. Part C, Methods

دوره 20 2  شماره 

صفحات  -

تاریخ انتشار 2014